Sequence Match

Name		Date
	sequence with the expression that descriterms of the sequence. Some choices will	•
1.	2,4,6,8,10	a. n+10 b. 0.3n
2.	1,3,9,27,81	c. 5n d. n + 5
3.	45, 41, 37, 33, 29	e. n+2
4.	11, 21, 31, 41, 51	f. 0.5n g. n+(−2) h. n+(−4)
5.	10, 5, 2½ , 1¼ , 5/8	i. 1.5n
6.	11, 3, –5, –13, –21	j. 3n k. n+(−8) l. 2n
7.	100, 20, 4, 0.8, 0.16	m. 0.2n
8.	7, 10.5, 15.75, 23.625, 35.4375	
9. Write the	letters of the problems above that are arit	hmetic sequences.
10. Write the	e letters of the problems above that are ge	eometric sequences?
11. The	by subtracting the first term from the sec	in an arithmetic sequence can be ond term.
12. The	by dividing the second term by the first to	in a geometric sequence can be erm.